P65: Speech Recognition Based on Bbrain Signals by the Quantum Support Vector Machine for Inflammatory Patient ALS
نویسندگان
چکیده مقاله:
People communicate with each other by exchanging verbal and visual expressions. However, paralyzed patients with various neurological diseases such as amyotrophic lateral sclerosis and cerebral ischemia have difficulties in daily communications because they cannot control their body voluntarily. In this context, brain-computer interface (BCI) has been studied as a tool of communication for these types of patients. In this study, the reliability of electroencephalography (EEG) signals in discriminating between different covert speech tasks is investigated. Twelve participants, across two sessions each, were asked to perform multiple iterations of three differing mental tasks for 10 s each: unconstrained rest or the mental repetition of the words “no”, “yes” and "rest" A Quantum Support Vector Machine was used to classify all three pairwise combinations of “no” or “yes” and "rest" trials and also for ternary classification. In Results An average accuracy of 0.94% ± 2.6 was reached in the classification of covert speech trials versus rest, with all participants exceeding chance level (0.95%). The classification of “no” versus “yes” yielded an average accuracy of 0.93 ± 0.6 with ten participants surpassing chance level (0.95). Finally, the ternary classification yielded an average accuracy of 0.93% ± 0.4. with all participants exceeding chance level (0.96%). The proposed QSVM algorithm provided significantly higher accuracies compared to some of the most common classification techniques in BCI. To our knowledge, this is the first report of using QSVM for the classification of EEG covert speech across multiple sessions. Our results support further study of covert speech as a BCI activation task, potentially leading to the development of more intuitive BCIs for communication.
منابع مشابه
Speech Emotion Recognition Using Support Vector Machine
Speech Emotion Recognition (SER) is a hot research topic in the field of Human Computer Interaction (HCI). In this paper, we recognize three emotional states: happy, sad and neutral. The explored features include: energy, pitch, linear predictive spectrum coding (LPCC), mel-frequency spectrum coefficients (MFCC), and mel-energy spectrum dynamic coefficients (MEDC). A German Corpus (Berlin Datab...
متن کاملintroduction of an intelligent model for diagnosis of apraxia of speech based on support vector machine
0
متن کاملAcoustic detection of apple mealiness based on support vector machine
Mealiness degrades the quality of apples and plays an important role in fruit market. Therefore, the use of reliable and rapid sensing techniques for nondestructive measurement and sorting of fruits is necessary. In this study, the potential of acoustic signals of rolling apples on an inclined plate as a new technique for nondestructive detection of Red Delicious apple mealiness was investigate...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملA hierarchical support vector machine based on feature-driven method for speech emotion recognition
Through the analysis of one-vs.-one, one-vs.-rest and the decision tree mechanism of binary support vector machine emotion classifiers, a method based on feature-driven hierarchical support vector machine is proposed for speech emotion recognition. For each layer, classifier used different feature parameters to drive its performance, and each emotion is subdivided layer by layer. This method di...
متن کاملA Neural Network Model Based on Support Vector Machine for Conceptual Cost Estimation in Construction Projects
Estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. This estimation has a major impact on the success of construction projects. Indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. The purpose of this paper is to introduce an intelligent model to im...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 96- 96
تاریخ انتشار 2018-04
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023